Luz ultravioleta: su efecto en tintes naturales aplicados en maderas del violín clásico: una metodología de investigación.

Joaquín Antonio Quiroz Carranza y Citlalli Cantú Gutiérrez*

Resumen:

Se propone una metodología para evaluar el efecto de luz ultravioleta (UV) sobre tintes naturales mexicanos aplicados en madera de especies utilizadas en la construcción del violín clásico: Arce (*Acer pseudoplatanus L.*), pinabete (*Picea abies L. H. Karst.*), y maple (*Acer rubrum L.*). Para degradar los colorantes naturales se propone la utilización de una cámara de luz ultravioleta (UV) utilizando focos Tecnolite G30T8 30 W de 750 lumenes, y registrar la variación del color mediante un espectrofotómetro Konica-Minolta usando las coordenadas L* a* b*. Mediante esto se buscará conocer la respuesta de los tintes en la madera de las tres especies seleccionadas, los resultados permitirán conocer el desempeño de los tintes y su uso en este tipo de maderas, lo que permitirá abrir líneas de investigación para el aprovechamiento de recursos forestales no maderables.

Palabras clave: tintes naturales, espectrofotometría, instrumentos musicales.

^{*} Asociación Red Verde, A.C. - 1cenciart@yahoo.com, Calle 47 N° 582-A, entre 84 y 84-A, Centro, Mérida, Yucatán, C.P., 97000

Introducción

En el México antiguo, sus pobladores descubrieron y utilizaron una amplia gama de plantas y animales, de los cuales extraían colorantes y teñían prendas de vestir, maderas, materiales cementantes, mascarones, murales, alimentos y cuerpos humanos (Ferrer, 2000). Hasta el siglo XIX los tintes derivados de la cochinilla, el añil y el palo de Campeche, entre otros, se extrajeron y exportaron en grandes cantidades a Europa hasta que la industrialización los sustituyó por pigmentos sintéticos. Pero aún perviven en las culturas tradicionales el uso de colorantes obtenidos de plantas y animales como son el cempasúchitl, el caracol púrpura, la grana cochinilla, el añil, el palo de Brasil, el palo de Campeche y el zacatlascalli (Arroyo, 2008), entre otras muchas especies.

El proceso de industrialización y otros fenómenos económicos y culturales, promovieron el uso de productos sintéticos sobre los naturales provocando daños en el medio ambiente y la salud humana, así como pérdida de conocimiento tradicional. Los colorantes naturales no han sido la excepción.

México, con sólo el 1.5% de la superficie terrestre, posee entre el 10 y 12% de las especies biológicas conocidas del mundo y un alto porcentaje de éstas son endémicas, es decir que sólo habitan, de forma natural, en un área restringida. Por su biodiversidad, México, se ubica entre los cinco primeros países, de los 17 llamados megadiversos y ocupa el tercer lugar entre los cinco países con mayor número de especies endémicas (Sarukhán, 2009). En el continente americano México ocupa el tercer lugar, después de Brasil y Colombia en biodiversidad. Su riqueza biológica incluye 23,424 especies de plantas vasculares, 535 especies de mamíferos, 1,107 de aves, 804 de reptiles y 361 de anfibios (Conabio,2011). Las especies de hongos estimadas en México asciende a 200 mil (Aguirre, *et al.*, 2014).

México es un país megadiverso biológica y culturalmente (Rzedowski, 1992; Toledo, 1994), y posee una gran abundancia de plantas tintóreas distribuidas ampliamente en su territorio (Arroyo, 2008), pero la industria química, nacional e internacional, domina el mercado de los colorantes utilizando sustancias sintéticas y dañinas (Astrid, 2008).

Conocer el comportamiento de los colorantes naturales al ser aplicados sobre maderas utilizadas en el acabado de instrumentos musicales clásicos como el violín, es importante, debido a su abundancia local y temporal, bajo costo, métodos sencillos de extracción, alta resistencia a la luz y mínimo deterioro a través del tiempo (Arroyo, 2008) y porque su extracción, si se hace de forma racional, puede contribuir al desarrollo local y a la recuperación del conocimiento tradicional. Este artículo propone evaluar el efecto de luz ultravioleta (UV) sobre tintes obtenidos de plantas nativas de México aplicados sobre maderas de las especies utilizadas en la construcción del violín clásico. Se considera como método de análisis el CIELab, el cual utiliza las coordenadas: L* luminosidad o claridad; y las coordenadas colorimétricas a* y b*. En el eje a* para los valores positivos se va del punto acromático hacia los rojos y para los valores negativos hacia los verdes. El eje b* para los valores positivos se va del punto acromático hacia los amarillos y para los valores negativos hacia los azules (Domínguez, et al. 2012). Para cuantificar la ubicación de los colores en las coordenadas L*a*b* se propone utilizar un espectrofotómetro Konica-Minolta y el software SpectraMagic (Alcón, 2011).

La distribución espectral de la luz transmitida o reflejada por una superficie entre los 380 a 400 nm corresponde a la percepción del color violeta, entre los 400 a 475 nm se tiene el color azul, de 500 a 570 el verde, de 570 a 590 el amarillo y de 700 a 770 el rojo. Por su parte la luz ultravioleta está en el rango de los 400 y 100 nm.

Los resultados del estudio propuesto contribuirán a comprender y aprovechar la riqueza natural y cultural disponible en México, particularmente en el Sursureste, en el uso y aplicación de tintes naturales en maderas de instrumentos musicales y para discernir sobre el deterioro de los tintes naturales por efecto de la luz ultravioleta.

Colorantes naturales de México y maderas de instrumentos musicales

En la literatura especializada se reconocen más de 40 especies de plantas y animales nativos de México como materia prima para la elaboración de colorantes y tintes (Pontón, 2007; Arroyo, 2008; Quiroz y Cantú, 2015). Recursos que, obtenidos y usados de forma sustentable pueden contribuir al desarrollo local y a la conservación de la diversidad biológica y cultural de México.

Las especies tintóreas nativas de México referenciadas en la literatura especializada y tradicional se agrupan en 25 familias botánicas y zoológicas: Acanthacea (1), Anacardiaceae (1), Asteraceae (10), Betulaceae (1), Bixaceae (1), Bromeliaceae (1), Commeliaceae (1), Convolvulaceae (1), Dactylopiidae (1), Fabaceae (5), Fagaceae (1), Juglandaceae (1), Lauraceae (1), Mimosaceae (3), Moraceae (2), Muricidae (1), Papaveraceae (2), Parmeliaceae (2), Polygalaceae (1), Resendaceae (1), Rhizophoraceae (1), Rosaceae (1), Solanaceae (1), Usneaceae (1) y Verbenaceae (1) (Pontón, 2007; Arroyo, 2008).

Los colorantes naturales se usan en productos alimentarios, textiles y cosméticos y se clasifican principalmente en flavonoides como el flavonol, flavonona, calcona y antocianina, los cuales generan colores amarillos, rojos y violetas (Cartaya y Reynaldo, 2001); carotenoindes como el caroteno y xentofila, generan el anaranjado y el amarillo (Carranco, *et al.* 2011); colorantes tipo quinona como antroquinona y naftoquinona, otorgan color amarillo, rojo hasta negro; los indigoides como el indol, delfinidina, dihidropilano, betaleina (azul al púrpura); las xantonas (amarillo) y antocianos (azul y rojo), (Roquero, 1995: Bechtold y Mussak, 2009).

Por otra parte, en la construcción del violín clásico se utilizan fundamentalmente maderas de cuatro especies: el Arce (*Acer pseudoplatanus* L., familia Aceraceae), nativa del sur y centro de Europa y oeste de Asia (Sjöstedt, 2012); El pinabete (*Picea abies* L. H. Karst., familia Pinaceae), originaria de norte, centro y este de Europa, norte de Grecia y oeste de Francia (Karinkanta, 2014), el maple (*Acer rubrum* L. Familia Aceraceae), originario de Norteamérica y el ébano (*Diospyros crassiflora Hiern*. Familia Ebenaceae) originaria del sureste de Nigeria, el este y centro de la Republica Centro-Africana y el sur de Gabón y Congo

Nombre Común	Nombre Científico	Familia Botánica	Distribución	Densidad	Usos en el violín
Arce	Acer pseudoplatanus L.	Aceraceae	Europa y oeste de Asia	660	fondo, brazo, voluta, costillas
Pinabete	Picea abies L. H. Karst	Pinaceae	Europa	460-510	tapa
Maple	Acer rubrum L.	Aceraceae	Canadá	500-651	tapa
Ebano	Diospyros crassiflora Hiern	Ebenaceae	Africa	900-1010	diapasón y accesorios

¹ El número entre paréntesis indica el numero de especies con propiedades tintóreas. Fuente: Loewe y Subiri, 1998; Sjöstedt, 2012; Karinkanta, 2014; AB TRÄTÄLJA s/f; Hernández Maldonado, et al. 2014.

(Ideara, SL., 2014) (tabla 1). Esta última por su coloración natural, no recibe ningún tratamiento de tintes.

Las maderas de arce, pinabete y maple son utilizadas en la construcción del violín clásico y se tiñen con distintas técnicas, como puede ser el entintado directo de la madera, la preparación de barnices con tinte o el envejecimiento del barniz con luz solar. Los violines clásicos generalmente presentan colores que van desde el amarillo, el anaranjado hasta el rojizo, colores que fueron definidos por preferencias culturales de la época clásica (siglo XVI) de los instrumentos de cuerda frotada. Pero los instrumentos tradicionales o populares presentan una gama de coloración más amplia.

Materiales y métodos propuestos

Seleccionar una muestra de colorantes de las 43 especies nativas de México (anexo 1), reportadas en la literatura especializada con base en su disponibilidad local y diversidad en la paleta cromática que ofrezcan colores como el café, el negro, el rosa, el rojo, el naranja, el violeta, el ocre, el gris, el amarillo, el púrpura y el azul marino (tabla 2). Las porciones vegetales (flores, hojas, tallos y corteza) se deberán colectar directamente en campo, en el caso de la grana cochinilla se podrá obtener de algún productor directo. Las materiales vegetales se deberán secar a temperatura ambiente y a la sombra, triturar y cribar hasta obtener un polvo homogéneo.

Para obtener los colorantes podrá utilizarse el equipo Soxhlet y empleando como disolvente el alcohol etílico. El equipo Soxhlet recircula los vapores condensados, arrastrando, de esta forma, las sustancias objetivo contenidas en un cartucho de celulosa desechable. La recirculación de 100 ml ocurre cada 5 minutos aproximadamente en estado estable. Después de la extracción se eliminará el disolvente con ayuda de un rotavapor, el material resultante deberá secarse en una estufa a 100° C durante 24 horas para remover cualquier traza de disolvente.

Los colorantes se prepararán como tintes utilizando agua, alcohol etílico, esencia de trementina y aceite de linaza, con un contenido de 25% de colorante base y 75% de solvente (Pino, *et al.* 2003; Arroyo, 2010). Los solventes mencionados se utilizarán por ser los que se utilizan generalmente en el acabado de instrumentos musicales y en otros procesos artesanales.

Cada uno de los tintes seleccionados se aplicará sobre tres probetas o muestras de 5 cm x 4 cm x 1 cm de maderas de arce, pinabete y maple, las cuales no deben haber sido sometidas a ningún tratamiento previo. El color natural de las probetas se registra inicialmente utilizando un espectrofotómetro portátil Konica-Minolta, posteriormente se entinta la madera y se seca al aire, registrando el color obtenido con el mismo equipo y finalmente las probetas de madera se someten a luz ultravioleta en una cámara controlada, usando una lámpara fluorescente UVA-351, con una longitud de onda de 365 nm que simula la radiación solar (Luna-Sánchez, *et al.*, 2013) y se registra la variación del color cada 7 días durante 65 días, y finalizando este periodo, el control de variación, debe llevarse a cabo cada 15 días hasta completar 125 días de exposición a luz ultravioleta (Valverde y Moya, 2010), con estos datos se construye un índice de variación del color por efecto de rayos UV, con el cual se puede cuantificar la resistencia y el grado de deterioro.

El espectrofotómetro portátil Konica-Minolta utiliza el software SpectraMagic, de esta forma mide la reflectancia espectral cada 10 nm, desde los 400 nm a los 700 nm. Para determinar la diferencia total entre dos colores se usa la fórmula

 $\Delta E^* = V\Delta L^* 2 + \Delta a^* 2 + \Delta b^* 2$

Donde:

 ΔE , es la diferencia total entre dos colores

ΔL, es la diferencia en luminosidad

Δa, es la diferencia en las coordenadas rojo/verde

Δb, es la diferencia en las coordenadas amarillo/azul

Tabla 2. Especies vegetales y animales potenciales

N°	Nombre científico	Familia botánica	Nombre común	Parte usada	Color obtenido
1	Cuscuta spp.	Convolvulaceae	Zacatlaxcalli	tallos	Amarillo
2	Dactylopius coccus Costa	Dactylopiidae	Grana cochinilla	Insecto completo	Rosa, rojo, naranja, viole- ta, ocre y gris
3	Bixa Orellana L.	Bixaceae	Achiote	Semillas	Naranja
4	Tillandsia usneoides (L.) L.	Bromeliaceae	Heno	Toda la planta	Amarillo claro
5	Tagetes erecta L.	Asteraceae	Cempasúchitl	Flores	Amarillo, ocre

N°	Nombre científico	Familia botánica	Nombre común	Parte usada	Color obtenido
6	Schinus molle L.	Anacardiaceae	Pirul	Corteza	Café
7	Haematoxylum campechianum L.	Fabaceae	Palo de Campeche	Madera	Violeta, negro, púrpura, gris, azul marino
8	Erythrina americana Mill.	Fabaceae	Colorín	Corteza	Amarillo claro
9	Tagetes lucida Cav.	Asteraceae	Pericón	Tallo, hojas, flores	Amarillo, naranja
10	Caesalpinia Coriaria (Jacq.) Willd	Leguminosae	Cascalote	Fruto, corteza	Café rojizo, negro

La luz ultravioleta es uno de los factores del intemperismo, al cual se enfrentan los constructores de bienes de madera muebles e inmuebles, ya que la luz con longitud de onda debajo de los 400 nm crea reacciones sobre la madera y sus acabados causando deterioro, esto se debe a que la luz UV forma radicales libres con la oxidación de hidroxilos fenólicos provocando cambios en el color de la madera, afectando también los tintes, barnices y lacas, la decoloración de estos materiales es un problema de estética de los productos de madera que afecta su valor de comercialización (Turgut, 2011). La evaluación de la durabilidad de los tintes naturales aplicados en las maderas de las especies utilizadas en la construcción del violín clásico puede contribuir a reconsiderar el valor económico y cultural de los recursos forestales no maderables y contribuir a su uso y conservación sustentable.

Es conveniente desarrollar líneas de investigación que evalúen la durabilidad de diferentes tintes naturales sobre una amplia diversidad de maderas para poder sugerir usos más amplios y diversos, lo que permitirá dar un valor agregado a los tintes naturales de México y poder contribuir al uso sustentable de los recursos forestales no maderables.

Literatura consultada

- –Elvira Aguirre-Acosta, Miguel Ulloa, Samuel Aguilar, Joaquín Cifuentes y Ricardo Valenzuela. 2014. "Biodiversidad de hongos en México". *Revista Mexicana de Biodiversidad*, Supl. 85: 76-81.
- -Alcón Gargallo, N. y Moreno Llombart, C. 2011. "Cálculo de diferencias de color como instrumento para valorar la vida útil de aplicadores de tinta". *Óptica Pura y Aplicada* 44(3):561-570.
- -Arroyo Figueroa, Gabriela; Ruiz Aguilar, Graciela M.L.; Vargas Rodríguez, Lorena y González Sánchez, Guillermo. 2010. Aplicación de productos derivados del insecto Dactylopius Coccus Costa (*Homóptera*, *Dactylopiidae*). *Acta Universitaria*. Universidad de Guanajuato 20(3):51-55.
- -Arroyo Ortiz, Leticia. 2008. *Tintes naturales mexicanos, su aplicación en algodón, henequén y lana*. Conabio-UNAM, México. 184 pp.
- –Astrid Garzón, Gloria. 2008. "Las antocianinas como colorantes naturales y compuestos bioactivos: revisión". *Acta Biológica Colombiana* 13(3):27-36.
- -Bechtold, Thomas y Mussak, Rita. 2009. *Handbook of Natural Colorants*. Willey. United Kingdom. P. 283
- -Cartaya, O. y Reynaldo, Inés. 2001. *Flavonoides: Características químicas y aplicaciones. Cultivos tropicales*. Instituto Nacional de Ciencias Agrícolas, Habana, Cuba 22(2):5-14.
- -Carranco Jáuregui, María Elena; Calvo Carrillo, Ma. De la Concepción y Pérez-Gil Romo, Fernando. 2011. "Carotenoides y su función antioxidante: revisión". *Archivos Latinoamericanos de Nutrición*. Sociedad Latinoamericana de Nutrición 61(3):233-241.
- -Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio). 2011. La biodiversidad en Veracruz: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A.C. México.

- -Domínguez Soto, Julia María; Román Gutiérrez, Alma Delia; Prieto García, Francisco y Acevedo Sandoval, Otilio. 2012. "Sistema de notación Munsell y CIELab como herramienta para evaluación de color en suelos". *Revista Mexicana de Ciencias Agrícolas* 3(1):141-155
- -Ferrer, Eulalio. 2000. "El color entre los pueblos nahuas". *Estudios de Cultura Náhuatl*, UNAM. 31:214-230.
- -Hernández-Maldonado, Saúl Antonio y Sotomayor-Castellanos, Javier Ramón. 2014. "Comportamiento elástico de la madera de *Acer rubrum* y de *Abies balsamea*". *Madera y Bosques* 20(3):113-123
- -Ideara, SL., 2014. "Estudio, análisis y consecuencias del uso de agentes químicos y maderas en los luthiers de la comunidad de Madrid". P. 71
- -Karinkanta, P. 2014. "Dry fine grinding of Norway spruce (*Picea abies*) wood in impact-based fine grinding mills". *Acta Universitatis Ouluensis* C 516. University of Oulu, Finlandia. P. 107.
- -Loewe M., V. y Subiri P., M. 1998. Sicomoro. *Acer pseudoplatanus*. Monografía. Instituto Forestal. Santiago de Chile. 42 pp.
- -Luna-Sánchez, R.A.; Zeremeño-Reséndiz, B.B.; Moctezuma, E.; Contreras-Bermúdez, R.E.; Leyva, E. y López-Barragán, M.A. 2013. "Fotodegradación de omeoprazol en solución acuosa utilizando TiO2 como catalizador". *Revista Mexicana de Ingeniería Química* 12(1):85-95
- -Pino Chalá, Wilber; Guerrero, Jair Enrique; Castro Rivas, Alvixon; Alberto Castro, Anilio; Aley Palacios, Jhon y Castro, Anatilde. 2003. "Extracción artesanal de colorantes naturales, una alternativa de aprovechamiento de la diversidad biológica del Chocó, Colombia". *Acta Biológica Colombiana* 8(2):95-98.
- -Pontón Zúñiga, Raúl. 2007. *Tintorería mexicana, colorantes naturales*. Gobierno del Estado de México, México. 173 pp.
- -Quiroz Carranza, Joaquín Antonio y Cantú Gutiérrez, Citlalli. 2015. Los sonidos de la madera: Los árboles de México y su relación con la creación de instrumentos musicales tradicionales y clásicos. Plaza y Valdés. P.179

- -Roquero, Ana. 1995. "Colores y colorantes de América". *Anales del Museo de América* 3:145-160.
- -Rzedowski, Jerzy. 1992. "Diversidad y orígenes de la flora fanerogámica de México". *Revista Ciencias*, UNAM, México. Número Especial, noviembre: 47-56.
- -Sarukhán, J., et al. 2009. *Capital natural de México. Síntesis: conocimiento actual, evaluación y perspectivas de sustentabilidad.* Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.
- -Sjöstedt, J. 2012. A literatura study and survey of sycamore maple (*Acer pseudoplatanus L.*) in southern Sweden. Tesis para obtener el grado de Maestro en Manejo Forestal. Swedish University of Agricultural Sciences. P. 53.
- -Toledo, Víctor M. 1994. "La diversidad Biológica de México. Nuevos retos para la investigación en los noventas". *Revista Ciencias*, UNAM. No. 34:43-57
- -Turgut Sahin, Halil. 2011. "Colour changes in Wood surfaces modified by a nanoparticulate based treatment". *Wood research*. 56(4):525-532
- -Valverde, Juan Carlos y Moya, Roger. 2010. "Efectos de la intemperie en el color de dos acabados aplicados en madera de *Cedrela odorata* y *Carapa guianensis*". *Maderas. Ciencia y Tecnología*, 12(3):171-180.

Anexo 1. Listado de especies vegetales y animales nativos de México como fuente natural de colorantes

Nombre científico	Familia botánica	Nombre común	Parte usada	Color obtenido
Justicia spicigera Schltdl.Schltdl.	Acanthaceae	Muicle	Tallos y hojas	Morado, azul
Schinus molle L.	Anacardiaceae	Pirul	Corteza	Café
Cirsium jorullense (Kunth). Spreng.	Asteraceae	Cardo santo	Toda la planta	Amarillo
Thithonia diversifolia (Hemsl.) A. Gray	Asteraceae	Girasol	Pétalos	Amarillo
Baccharis vacci- nioides Kunth	Asteraceae	Hierba del carbonero	Ramas y hojas	Amarillo

Nombre científico	Familia botánica	Nombre común	Parte usada	Color obtenido
Tagetes lunulata Ortega	Asteraceae	Cinco llagas	Flores	Amarillo medio
Tagetes lucida Cav.	Asteraceae	Pericón	Tallo, hojas, flores	Amarillo, naranja
Tagetes erecta L.	Asteraceae	Cempasúchitl	Flores	Amarillo, ocre
Ageratina ligustrina (DC.) R.M. King & H. Rob.	Asteraceae	Hierba amarga	Toda la planta	Negro
Dahlia coccinea Cav.	Asteraceae	Dalia	Pétalos	Rojo, naranja, amarillo
Cosmos bipinnatus Cav.	Asteraceae	Mirasol	Tallos y hojas	Verde
Helianthus annus L.	Asteraceae	Girasol acahual	Semillas y pétalos	Violeta y amarillo
Alnus acuminata Kunt	Betulaceae	Aliso	Tallos, hojas, corteza	Amarillo, café
Bixa Orellana L.	Bixaceae	Achiote	Semillas	Naranja
Tillandsia usneoides (L.) L.	Bromeliaceae	Heno	Toda la planta	Amarillo claro
Tradescantia crassifolia Cav.	Commelinaceae	Matlalxóchit	Flores	Azul, lila
Cuscuta spp.	Convolvulaceae	Zacatlaxcall	Tallos	Amarillo
Dactylopius coccus Costa	Dactylopiidae	Grana cochinilla	Insecto completo	Rosa, rojo, na- ranja, violeta, ocre y gris
Eysenhardtia polys- tachya (Ort.) Sarg.	Fabaceae	Palo azul	Tronco	Amarillo
Erythrina americana Mill.	Fabaceae	Colorín	Corteza	Amarillo claro
Indigofera suffruticosa Mill	Fabaceae	Añil	Tallos y hojas	Azul
Haematoxylum brasiletto Karst.	Fabaceae	Palo Brasil	Tronco	Rojo, negro, violeta, guinda

Nombre científico	Familia botánica	Nombre común	Parte usada	Color obtenido
Haematoxylum campechianum L.	Fabaceae	Palo Campeche	Madera	Violeta, negro, púrpura, gris, azul marino
Quercus spp.	Fagaceae	Encino	Corteza	Café
Carya ovata var. mexicana (Engelm.) Manning.	Juglandaceae	Nogal americano	Cáscara de fruto	Café
Persea americana Mills.	Lauraceae	Aguacate	Semilla	Café
Pithecellobium dulce (Roxb.) Benth.	Mimosaceae	Guamuchil	Vainas y raíz	Amarillo, verde
Enterolobium cyclocarpum (Jacq.) Griseb	Mimosaceae	Guanacaste	Corteza y semillas	Marrón
Acasia farnesiana (L.) Willd.	Mimosaceae	Huisache	vainas	Negro o gris oscuro
Ficus pertusa L. f.	Moraceae	Camichín	Fruto	Ocre, caqui
Maclura tinctorea (L.) D. Don ex Steud. Chloropho- ra tinctorea (L.) Gaud.	Moraceae	Moral	Corteza y madera	Verde olivo, amarillo
Plicopurpura pansa Gould	Muricidae	Caracol púrpura	Secreción	Violeta
Bocconia arborea S. Watson	Papaveraceae	Mano de león	Corteza	Amarillo
Bocconia frutescens L.	Papaveraceae	Palo amarillo	Corteza	Naranja
Pseudodevernia intensa (Nyl.) Hale & W.L. Culb	Parmeliaceae	Liquen	Todo el liquen	Amarillo claro
Pseudoparmelia caperata (L.) Hale	Parmeliaceae	Liquen	Todo el liquen	Amarillo, ocre
Monnina xalapensis Kunth	Polygalaceae	Hierba de mula	Fruto	Verde-azul claro
Resenda luteola L	Resendaceae	Gualda	Tallos y hojas	Amarillo
Rhizophora mangle L.	Rhizophoraceae	Mangle rojo	Raíces aéreas	Ocre, gris

Nombre científico	Familia botánica	Nombre común	Parte usada	Color obtenido
Prunus serótina Ehrh.	Rosaceae	Capulín	Fruto, corteza	Café
Solanum nigrescens M. Martens & Galeotti	Solanaceae	Hierba mora	Fruto maduro	Azul claro
Usnea subfloridana Stirt.	Usneaceae	Liquen	Todo el liquen	Naranja quemado
Lantana camara L.	Verbenaceae	Cinco negritos	Fruto	Gris violáceo

Fuente: Pontón (2007) y Arroyo (2008).